

### **Descriptions**

## 10W isolated, DC/DC Converter



### **Features**

- Adjustable input starting (under-voltage) voltage
- Operating ambient temperature range: -40℃ to +85℃
- Up to 97% efficiency
- Input under-voltage protection, output short-circuit, over-current protection
- Open frame package
- 1/4-Brick package industry standard pin-out

### **Applications**

- Robotic field
- Battery powered systems

### **Selection Guide**

|                  |                           | Input Voltag   | ge (VDC)*   |         | Output   | Full Load           | Capacitive |
|------------------|---------------------------|----------------|-------------|---------|----------|---------------------|------------|
| Certification    | Part No.                  | Nominal        | MAX*        | Voltage | Current  | Efficiency (%)      | Load (µF)  |
|                  |                           | (Range)        | IVIAAA      | (VDC)   | (A) Max. | Vin Min. / Vin Max. | Max.       |
|                  | DNUQB10-B4824             | 48             |             | 24      | 10       | 94/97               | 3300       |
| EN/BS EN         | DN0QB10-B4024             | (30-75)        | 80          | 24      | 10       | 94/9/               | 3300       |
| LIN/ D3 LIN      | DNUQB10-B4812             | 48             | 80          | 12      | 10       | 92/95               | 5500       |
|                  | DINUQB10-B4812            | (16-75)        |             | 12      | 10       | 92/95               | 5500       |
| Note: *Evceeding | the maximum input voltage | may cause nerm | anent damag | Δ       |          |                     |            |

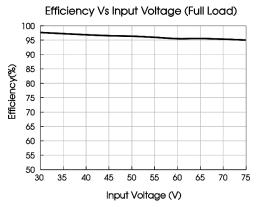


## Specifications

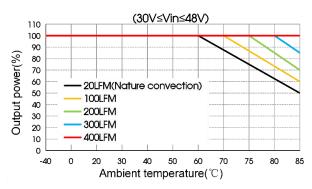
| Product<br>Specifications | ltem                                        | Operating Conditions                   |                     | Min.        | Тур.         | Max.          | Unit                                        |  |  |  |
|---------------------------|---------------------------------------------|----------------------------------------|---------------------|-------------|--------------|---------------|---------------------------------------------|--|--|--|
| -                         | Input Current                               | Nia antical transfer and               | 24VDC Output        |             | 5208/35      | 5320/80       |                                             |  |  |  |
|                           | (full load / no-load)                       | Nominal input voltage                  | 12VDC Output        |             | 2660/35      | 2718/80       | .8VDC) mA  %  μs % %/°C mVp-p %lo overy %Vo |  |  |  |
|                           | Reflected Ripple Current                    | Nominal input voltage                  |                     |             | 200          |               |                                             |  |  |  |
|                           | Surge Voltage (1sec.<br>max.)               |                                        |                     | -0.7        |              | 80            |                                             |  |  |  |
|                           | Starting Voltage                            | DNUQB10-B4824                          |                     |             |              | 30            |                                             |  |  |  |
|                           | Starting voltage                            | DNUQB10-B4812                          |                     |             |              | 16            |                                             |  |  |  |
| Input                     | Under-voltage protection                    | DNUQB10-B4824                          |                     | 25          | 27           |               | VDC                                         |  |  |  |
| -                         | - '                                         | DNUQB10-B4812                          |                     | 12.5        | 14           |               |                                             |  |  |  |
| Specifications            | Adjustable input<br>Starting(Under-voltage) | Refer to Design Reference for details  | 24VDC Output        | 30          |              | 75            |                                             |  |  |  |
|                           | Voltage                                     | TOT DETAILS                            | 12VDC Output        | 16          |              | 75            | 75                                          |  |  |  |
|                           | Input Filter                                |                                        |                     |             | Capacita     | nce filter    |                                             |  |  |  |
|                           | _                                           | Module on                              |                     | · · · · · · | open or pull |               |                                             |  |  |  |
|                           | Ctrl <sup>®</sup>                           | Module off                             |                     | Ctrl pir    | pulled low   | to GND (0-0   | .8VDC)                                      |  |  |  |
|                           |                                             | Input current when off                 |                     |             | 2            | 10            | mA                                          |  |  |  |
|                           | Hot Plug                                    |                                        |                     |             | Unava        | ilable        | e                                           |  |  |  |
|                           | Voltage Accuracy                            | 0%-100% load                           |                     | ±1          | ±3           | %             |                                             |  |  |  |
|                           | Linear Regulation                           | Full load, the input voltage i high    |                     | ±0.1        | ±0.5         |               |                                             |  |  |  |
|                           | Load Regulation                             | 5%-100% load                           |                     | ±0.3        | ±2           |               |                                             |  |  |  |
| Output                    | Transient Recovery Time                     | 25% load step change                   |                     | 200         | 500          | μs            |                                             |  |  |  |
| Specifications            | Transient Response Deviation                | 25% load step change                   |                     |             | ±4           | ±5            | %                                           |  |  |  |
|                           | Temperature Coefficient                     | Full load                              |                     |             |              | ±0.03         | %/℃                                         |  |  |  |
|                           | Ripple & Noise <sup>©</sup>                 | 20MHz bandwidth                        |                     |             | 150          | 220           | mVp-p                                       |  |  |  |
|                           | Over-current protection                     |                                        |                     | 110         | 130          | 190           |                                             |  |  |  |
|                           | Short-circuit Protection                    | Input voltage range                    |                     | Hiccı       | up, continuo | us, self-reco | overy                                       |  |  |  |
|                           | Trim                                        |                                        |                     | 90          |              | 110           | 0/1/0                                       |  |  |  |
|                           | Sense                                       | Refer to Remote Sense Appl             | ication for details |             |              | 105           | %00                                         |  |  |  |
|                           | Operating Temperature                       |                                        |                     | -40         |              | +85           | %/°C<br>mVp-p<br>%lo<br>very                |  |  |  |
|                           | Storage Temperature                         |                                        |                     | -55         |              | +125          | ە <u>ر</u>                                  |  |  |  |
| General                   | Pin Soldering Resistance<br>Temperature     | Wave-soldering, 10s                    |                     |             |              | 260           | -ر                                          |  |  |  |
| Specifications            | Storage Humidity                            | Non-condensing                         |                     | 5           |              | 95            | %RH                                         |  |  |  |
| •                         | Vibration                                   | 0-150Hz, 5g, 0.75mm, 90 Mi             | n. along X, Y and Z | ı           |              | 1             |                                             |  |  |  |
|                           |                                             | -                                      | 24VDC Output        |             | 250          |               |                                             |  |  |  |
|                           | Switching Frequency                         | PWM mode                               | 12VDC Output        |             | 200          |               | kHz                                         |  |  |  |
|                           | MTBF                                        | MIL-HDBK-217F@25°C                     |                     | 1000        |              |               | k hour                                      |  |  |  |
| Mechanical                | Dimensions                                  | 59.20 × 37.60 × 13.00 mm               |                     | 1           | 1            | 1             | I                                           |  |  |  |
|                           | Weight                                      | 33.0g(Typ.)                            |                     |             |              |               |                                             |  |  |  |
| Specifications            | Cooling Method                              | Nature convection or forced convection |                     |             |              |               |                                             |  |  |  |



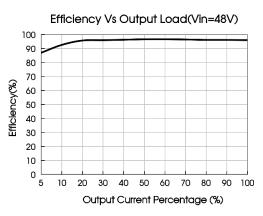
①The voltage of Ctrl pin is relative to input pin GND;


②The "parallel cable" method is used for Ripple and Noise test.

## Electromagnetic Compatibility (EMC)


| Emissions    | CE    | CISPR32/EN55032 CLASS A (see Fig. 2 for recommended circuit) |                                                   |
|--------------|-------|--------------------------------------------------------------|---------------------------------------------------|
| EIIIISSIOIIS | RE    | CISPR32/EN55032 CLASS A (see Fig. 2 for recommended circuit) | 5032 CLASS A (see Fig. 2 for recommended circuit) |
|              | ESD   | IEC/EN61000-4-2 Contact ±6kV                                 | perf. Criteria B                                  |
|              | RS    | IEC/EN61000-4-3 10V/m                                        | perf. Criteria A                                  |
| Immunity     | EFT   | IEC/EN61000-4-4 ±2kV (see Fig. 2 for recommended circuit)    | perf. Criteria A                                  |
|              | Surge | IEC/EN61000-4-5 ±2kV (see Fig. 2 for recommended circuit)    | perf. Criteria B                                  |
|              | CS    | IEC/EN61000-4-6 10 Vr.m.s                                    | perf. Criteria A                                  |

### **Characteristic Curve**


DNUQB10-B4824




DNUQB10-B4824 Temperature Derating Curves



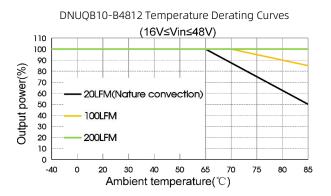
DNUQB10-B4824



DNUQB10-B4824 Temperature Derating Curves



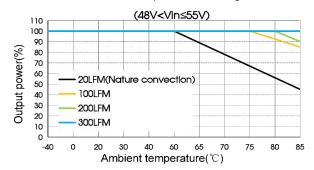



10

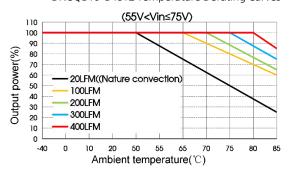
-40

400LFM

## **DNUQB10-B48xx Series**

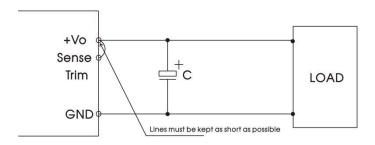

DNUQB10-B4824 Temperature Derating Curves




DNUQB10-B4812 Temperature Derating Curves

Ambient temperature(°C)

75



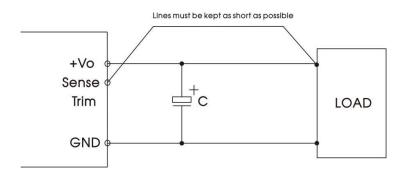

DNUQB10-B4812 Temperature Derating Curves



## **Remote Sense Application**

#### 1.Remote sense connection if not used




#### Notes:

①If the sense function is not used for remote regulation the user must connect the Sense to + Vo at the DC-DC converter pins and will compensate for voltage drop across pins only;

②The connections between Sense and +Vo must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.



#### 2. Remote sense connection used for compensation



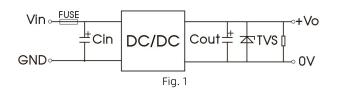
#### Notes:

①Using remote sense with long wires may cause unstable output.

@We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

③Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

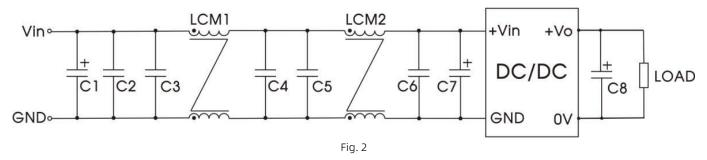
### Design Reference


#### 1. Typical application

① We recommended using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a100µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

@We recommenced increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than under-voltage protection point.

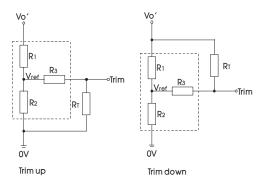
③We recommended increasing the output capacitance with limited to the capactive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.


④ Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.



| Vout(VDC) | Fuse      | Cin*  | Cout  | TVS     |
|-----------|-----------|-------|-------|---------|
| 12 VDC    | 20A, slow | 100   | 100   | SMDJ14A |
| 24 VDC    | blow      | 100µF | 100µF | SMDJ28A |

#### Note:


\*Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low.





| Components         | Recommended Component value   | Components function |
|--------------------|-------------------------------|---------------------|
| C1                 | 1000µF electrolytic capacitor | Meet EFT and Surge  |
| C7                 | 330µF electrolytic capacitor  | Meet Lift and Surge |
| C1                 | 1000µF electrolytic capacitor |                     |
| C7                 | 330µF electrolytic capacitor  |                     |
| C8                 | 100µF electrolytic capacitor  | Meet CE and RE      |
| C2, C3, C4, C5, C6 | 4.7 μF electrolytic capacitor |                     |
| LCM1, LCM2         | 47 μH common mode inductor    |                     |
|                    |                               |                     |

#### 2. Trim Function for Output Voltage Adjustment (open if unused)



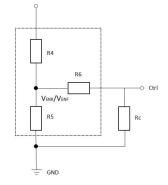
Calculation formula of Trim resistance:

up: 
$$R_T = \frac{aR_2}{R_2 - a} - R_3$$
  $a = \frac{Vref}{Vo' - Vref} \cdot R_1$ 

down: RT= 
$$\frac{aR_1}{R_1-a}$$
 -R3  $a = \frac{Vo'-Vref}{Vref} \cdot R_2$ 

RT = Trim Resistor value;

a = self-defined parameter


Vo'= desired output voltage (±10% max.)

TRIM resistor connection (dashed line shows internal resistor network)

| Vout(VDC) | R1(kΩ) | R2(kΩ) | R3(kΩ) | Vref(V) |
|-----------|--------|--------|--------|---------|
| 12        | 330    | 23.48  | 120    | 0.8     |
| 24        | 330    | 11.38  | 91     | 0.8     |

Note: When using the Trim down function make sure that the RT resistor value is calculated correctly. If the Trim pin is shorted with +Vo, or its value is too low, then the output voltage Vo would be lower, which may cause the product to fail.

#### 3. Adjustable input Starting (Under-voltage) Voltage and Resistor calculation



Calculation resistor of Adjustable input Starting (Under-voltage) Voltage:

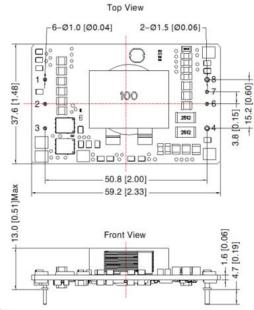
$$Rc = \frac{bR_5}{R_5 \text{-}b} \text{-}R_6 \qquad b = \frac{V_{EN}}{Vin \text{-}V_{EN}} \bullet R_4$$

RC: resistor of Adjustable input Starting (Under-voltage) Voltage:

b: self-defined parameter

When VEN=VENR, Vin is actual starting voltage required for input;

When VEN=VENF, Vin is actual under-voltage required for input;


Adjustable input Starting (Under-voltage) Voltage resistor connection (dashed line shows internal resistor network)

| Vout(VDC) | R4(kΩ) | R5(kΩ) | R6(kΩ) | VENR(V) | VENF(V) |
|-----------|--------|--------|--------|---------|---------|
| 12        | 100    | 8.93   | 0.1    | 1.22    | 1.09    |
| 24        | 100    | 4.32   | 0.1    | 1.22    | 1.09    |

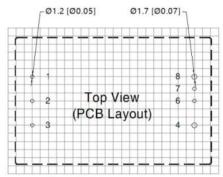
4. The products do not support parallel connection of their output.



### **Dimensions and Recommended Layout**



Note:


Unit: mm[inch]

Pin1,2,3,6,7's diameter: 1.0[0.04] Pin4,8's diameter: 1.5[0.06]

Pin diameter tolerances:  $\pm 0.1[\pm 0.004]$ General tolerances:  $\pm 0.5[\pm 0.02]$ 

Device layout is for reference only, the specific object shall prevail





Note: Grid 2.54\*2.54mm

|     | Pin- | -Out |        |
|-----|------|------|--------|
| Pin | Mark | Pin  | Mark   |
| 1   | +Vin | 4    | OV     |
| 2   | Ctrl | 6    | Trim   |
| 3   | -Vin | 7    | Sense+ |
|     |      | 8    | +Vo    |

#### Note:

- 1. If the product is not operated within the required load range, the product performance cannot be guaranteed to comply with all parameters in the datasheet;
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75% with nominal input voltage and rated output load;
- 3. All index testing methods in this datasheet are based on our company corporate standards;
- 4. Products are related to laws and regulations: see "Features" and "EMC";
- 5. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.